自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

龙哥盟

人最大的痛苦就是说一些自己都不相信的话

翻译 Python 数据科学手册 5.2 Scikit-Learn 简介

5.2 Scikit-Learn 简介 原文:Introducing Scikit-Learn 译者:飞龙 协议:CC BY-NC-SA 4.0 译文没有得到原作者授权,不保证与原文的意思严格一致。 有几个 Python 库提供一系列机器学习算法的实现。最著名的是...

2017-06-30 21:27:42 12473 0

翻译 Python 数据科学手册 5.1 什么是机器学习

5.1 什么是机器学习 原文:What Is Machine Learning? 译者:飞龙 协议:CC BY-NC-SA 4.0 译文没有得到原作者授权,不保证与原文的意思严格一致。 在我们查看机器学习方法的各种细节之前,先了解什么是机器学习,什么不是。机器学习...

2017-06-30 15:28:55 8802 0

翻译 Python 数据科学手册 5.5 朴素贝叶斯分类

5.5 朴素贝叶斯分类 原文:In Depth: Naive Bayes Classification 译者:飞龙 协议:CC BY-NC-SA 4.0 译文没有得到原作者授权,不保证与原文的意思严格一致。 前四节对机器学习概念进行了总体概述。 在本节和随后的一节...

2017-06-29 15:09:09 8979 0

原创 预测今后的北京高考人数

# coding: utf-8# 作者:Wizard <github.com/wizardforcel> # 预测今后的北京高考人数 # 假设 x 年的出生人数和 (x + 18) 年的高考人数是线性关系def unary_linear_fit(x, y): assert(x.n...

2017-06-23 09:36:44 8785 0

翻译 Scikit-learn 秘籍 翻译完成

Scikit-learn 秘籍 原书:Scikit-learn Cookbook在线阅读 PDF格式 EPUB格式 MOBI格式 代码仓库 译者 章节 译者 1 预处理 2 回归 3 聚类 4 分类 5 后处理 协议CC BY-NC-SA 4.0

2017-06-22 16:14:17 9007 0

翻译 Scikit-learn 秘籍 第五章 模型后处理

第五章 模型后处理 作者:Trent Hauck 译者:飞龙 协议:CC BY-NC-SA 4.0 5.1 K-fold 交叉验证这个秘籍中,我们会创建交叉验证,它可能是最重要的模型后处理验证练习。我们会在这个秘籍中讨论 k-fold 交叉验证。有几种交叉验证的种类,每个都...

2017-06-22 15:51:23 9029 0

翻译 Scikit-learn 秘籍 第四章 使用 scikit-learn 对数据分类

第四章 使用 scikit-learn 对数据分类 作者:Trent Hauck 译者:飞龙 协议:CC BY-NC-SA 4.0 分类在大量语境下都非常重要。例如,如果我们打算自动化一些决策过程,我们可以利用分类。在我们需要研究诈骗的情况下,有大量的事务,人去检查它们是不...

2017-06-20 17:15:53 10863 0

翻译 Python 数据科学入门教程:机器学习:回归

Python 数据科学入门教程:机器学习:回归 原文:Regression - Intro and Data 译者:飞龙 协议:CC BY-NC-SA 4.0 引言和数据 欢迎阅读 Python 机器学习系列教程的回归部分。这里,你应该已经安装了 Scikit-L...

2017-06-17 15:30:22 10753 1

原创 NumPy Essentials 带注释源码 六、NumPy 中的傅里叶分析

NumPy 中的傅里叶分析# 来源:NumPy Essentials ch6绘图函数import matplotlib.pyplot as plt import numpy as np def show(ori_func, ft, sampling_period = 5): n = ...

2017-06-15 11:12:25 14408 0

原创 NumPy Essentials 带注释源码 五、NumPy 中的线性代数

NumPy 中的线性代数# 来源:NumPy Essentials ch5矩阵import numpy as np ndArray = np.arange(9).reshape(3,3) # matrix 可以从 ndarray 直接构建 x = np.matrix(ndArray) # i...

2017-06-15 09:34:16 9089 0

原创 NumPy Essentials 带注释源码 四、NumPy 核心和模块

NumPy 核心和模块# 来源:NumPy Essentials ch4步长 # 步长是每个维度相邻两个元素的偏移差值 import numpy as npx = np.arange(8, dtype = np.int8) x # array([0, 1, 2, 3, 4, 5, 6, 7]) #...

2017-06-14 20:50:15 8734 0

原创 NumPy Essentials 带注释源码 三、NumPy 数组使用

NumPy 数组使用# 来源:NumPy Essentials ch3向量化import numpy as np # NumPy 数组的运算是向量化的# 数组和标量运算是每个元素和标量运算 x = np.array([1, 2, 3, 4]) x + 1 # array([2, 3, 4, 5...

2017-06-14 20:47:33 8000 0

原创 NumPy Essentials 带注释源码 二、NumPy 数组对象

NumPy 数组对象# 来源:NumPy Essentials ch2数组索引和切片# 创建 100x100 个 0~1 随机数 x = np.random.random((100, 100)) # 取第 42 行 87 列的元素(从零开始) y = x[42, 87]# 取第 k 行的所有元素 ...

2017-06-14 20:44:27 7954 0

原创 NumPy Cookbook 带注释源码 十一、NumPy 的底牌

NumPy 的底牌# 来源:NumPy Cookbook 2e Ch11np.random.seed(44) a = np.random.random_integers(-4, 4, 7) print(a) # [ 0 -1 -3 -1 -4 0 -1]# ufunc 的 at 方法可以对...

2017-06-14 20:41:29 8123 0

原创 NumPy Cookbook 带注释源码 十、Scikit 中的乐趣

Scikit 中的乐趣# 来源:NumPy Cookbook 2e Ch10加载示例数据集from __future__ import print_function from sklearn import datasets# datasets.load_? 用于加载不同的数据集 print fi...

2017-06-14 20:38:42 9284 0

原创 NumPy Cookbook 带注释源码 六、NumPy 特殊数组与通用函数

NumPy 特殊数组与通用函数# 来源:NumPy Cookbook 2e ch6创建通用函数from __future__ import print_function import numpy as np# 我们需要定义对单个元素操作的函数 def double(a): return ...

2017-06-14 20:33:10 8141 0

原创 NumPy Cookbook 带注释源码 五、NumPy 音频和图像处理

NumPy 音频和图像处理# 来源:NumPy Cookbook 2e Ch5将图像加载进内存import numpy as np import matplotlib.pyplot as plt# 首先生成一个 512x512 的图像 # 在里面画 30 个正方形 N = 512 NSQUAR...

2017-06-12 20:10:59 9145 0

原创 NumPy Cookbook 带注释源码 四、连接 NumPy 与 剩余世界

连接 NumPy 与 剩余世界# 来源:NumPy Cookbook 2e Ch4使用缓冲区协议# 协议在 Python 中相当于接口 # 是一种约束 import numpy as np import Image # from PIL import Image (Python 3) imp...

2017-06-12 09:24:07 7431 0

原创 NumPy Cookbook 带注释源码 三、掌握 NumPy 常用函数

掌握 NumPy 常用函数斐波那契数的第 n 项# 来源:NumPy Cookbook 2e Ch3.1import numpy as np# 斐波那契数列的每个新项都由之前的两项相加而成 # 以 1 和 2 开始,前 10 项为: # 1, 2, 3, 5, 8, 13, 21, 34, 55,...

2017-06-11 16:59:18 7723 0

原创 NumPy Beginner's Guide 2e 带注释源码 九、使用 Matplotlib 绘图

使用 Matplotlib 绘图# 来源:NumPy Biginner's Guide 2e ch9绘制多项式函数import numpy as np import matplotlib.pyplot as plt# 创建函数 func = x ** 3 + 2 * x ** 2 + 3...

2017-06-10 22:15:30 9778 0

原创 计算布林带

计算布林带# coding: utf-8 # 作者:Wizard <github.com/wizardforcel>import numpy as np from matplotlib import pyplot as plt import sys# 获取数据 # 因为没找到数据源,所...

2017-06-10 17:51:31 10341 0

原创 NumPy Beginner's Guide 2e 带注释源码 三、熟悉 NumPy 常用函数

熟悉 NumPy 常用函数# 来源:NumPy Biginner's Guide 2e ch3读写文件import numpy as np# eye 用于创建单位矩阵 i2 = np.eye(2) print i2 ''' [[ 1. 0.] [ 0. ...

2017-06-10 17:49:41 9462 0

原创 NumPy Beginner's Guide 2e 带注释源码 七、NumPy 特殊例程

NumPy 特殊例程# 来源:NumPy Biginner's Guide 2e ch7字典排序import numpy as np import datetime# 日期转成字符串 def datestr2num(s): return datetime.datetime.str...

2017-06-02 19:09:23 8850 0

原创 NumPy Beginner's Guide 2e 带注释源码 六、深入 NumPy 模块

深入 NumPy 模块# 来源:NumPy Biginner's Guide 2e ch6矩阵的逆import numpy as npA = np.mat("0 1 2;1 0 3;4 -3 8") print "A\n", A '�...

2017-06-01 17:26:23 8605 0

原创 NumPy Beginner's Guide 2e 带注释源码 五、处理 NumPy 矩阵和 ufunc

处理 NumPy 矩阵和 ufunc# 来源:NumPy Biginner's Guide 2e ch5创建矩阵import numpy as np# mat 函数创建矩阵 # 空格分割行,分号分隔列 A = np.mat('1 2 3; 4 5 6; 7 8 9')...

2017-06-01 14:24:50 7659 0

原创 NumPy Beginner's Guide 2e 带注释源码 四、NumPy 便利的函数

NumPy 便利的函数# 来源:NumPy Beginner's Guide 2e ch4交易相关偶对import numpy as np from matplotlib.pyplot import plot from matplotlib.pyplot import show# 读入 ...

2017-06-01 10:34:49 9600 0

提示
确定要删除当前文章?
取消 删除