ApacheCN 活动汇总 2019.7.12

公告

  1. 欢迎大家在我们平台上投放广告。如果你希望在我们的专栏、文档或邮件中投放广告,请准备好各种尺寸的图片和专属链接,联系咸鱼(QQ 1034616238)。
  2. 我们组织了一个开源互助平台,方便开源组织和大 V 互相认识,互相帮助,整合资源。请回复这个帖子并注明组织/个人信息来申请加入。
  3. 请回复这个帖子来推荐希望翻译的内容。如果大家遇到了做得不错的教程或翻译项目,也可以推荐给我们。我们会联系项目的维护者,一起把它变得更好。
  4. 我们的各个公众平台接受个人学习博文,论文解读,比赛心得等 AI 相关文章投稿,请将文章链接发到这里,我们会每日从所有投稿博文中精选两篇,在 ApacheCN 全平台推送。
  5. 为了能够将开源事业做大做强,ApacheCN 需要与公益基金会(IT、教育类)合作,欢迎大家提供帮助。同时我们也接受社会各界的捐助
  6. 如果你不希望再收到我们的邮件,请直接拉黑我们,不要浪费彼此的时间,谢谢合作。
  7. ByteInAI 是我们和 Datawhale、AI 有道、黄海广博士等组织或个人联合推出的 AI 垂直自媒体,是一个纯商业项目。如果你有意向投资这个项目,请联系 Datawhale(微信二维码)或咸鱼(QQ 1034616238)。

组织任务

认领须知:

  1. 请私聊片刻(529815144)、咸鱼(1034616238)、或飞龙(562826179)来认领任务,我们会把你拉进合伙人群。
  2. 除了列出的翻译项目之外,现有翻译项目不接受新的负责人。如果你打算贡献,请直接提交Pull Request。
  3. 如果你的想法没有列出(包括但不仅限于翻译项目),同样欢迎私聊我们。

翻译校对活动

UIUC CS241 系统编程中文讲义【校对】

参与方式:https://github.com/apachecn/uiuc-cs241-notes-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/uiuc-cs241-notes-zh/issues/1

项目仓库:https://github.com/apachecn/uiuc-cs241-notes-zh

认领:1/78,校对:0/78

章节贡献者进度
#Informal词汇表
#Piazza:何时以及如何寻求帮助
编程技巧,第1部分
系统编程短篇小说和歌曲
C编程,第1部分:简介@blue-bird1
C编程,第2部分:文本输入和输出
C编程,第3部分:常见问题
C编程,第4部分:字符串和结构
C编程,第5部分:调试
C编程,复习题
进程,第1部分:简介
分叉,第1部分:简介
分叉,第2部分:Fork,Exec,等等
进程控制,第1部分:使用信号等待宏
进程复习题
内存,第1部分:堆内存简介
内存,第2部分:实现内存分配器
内存,第3部分:粉碎堆栈示例
内存复习题
Pthreads,第1部分:简介
Pthreads,第2部分:实践中的用法
Pthreads,第3部分:并行问题(奖金)
Pthread复习题
同步,第1部分:互斥锁
同步,第2部分:计算信号量
同步,第3部分:使用互斥锁和信号量
同步,第4部分:临界区问题
同步,第5部分:条件变量
同步,第6部分:实现障碍
同步,第7部分:读者编写器问题
同步,第8部分:环形缓冲区示例
同步复习题
死锁,第1部分:资源分配图
死锁,第2部分:死锁条件
死锁,第3部分:餐饮哲学家
死锁复习题
虚拟内存,第1部分:虚拟内存简介
管道,第1部分:管道介绍
管道,第2部分:管道编程秘密
文件,第1部分:使用文件
调度,第1部分:调度过程
调度,第2部分:调度过程:算法
IPC复习题
POSIX,第1部分:错误处理
网络,第1部分:简介
网络,第2部分:使用getaddrinfo
网络,第3部分:构建一个简单的TCP客户端
网络,第4部分:构建一个简单的TCP服务器
网络,第5部分:关闭端口,重用端口和其他技巧
网络,第6部分:创建UDP服务器
网络,第7部分:非阻塞I O,select()和epoll
RPC,第1部分:远程过程调用简介
网络复习题
文件系统,第1部分:简介
文件系统,第2部分:文件是inode(其他一切只是数据…)
文件系统,第3部分:权限
文件系统,第4部分:使用目录
文件系统,第5部分:虚拟文件系统
文件系统,第6部分:内存映射文件和共享内存
文件系统,第7部分:可扩展且可靠的文件系统
文件系统,第8部分:从Android设备中删除预装的恶意软件
文件系统,第9部分:磁盘块示例
文件系统复习题
过程控制,第1部分:使用信号等待宏
信号,第2部分:待处理的信号和信号掩码
信号,第3部分:提高信号
信号,第4部分:信号
信号复习题
考试主题
C编程:复习题
多线程编程:复习题
同步概念:复习题
内存:复习题
管道:复习题
文件系统:复习题
网络:复习题
信号:复习题
系统编程笑话

Cython 3.0 中文文档【校对】

参与方式:https://github.com/apachecn/cython-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/cython-doc-zh/issues/1

项目仓库:https://github.com/apachecn/cython-doc-zh

认领:0/37,校对:0/37

章节贡献者进度
Cython - 概述
安装 Cython
构建 Cython 代码
通过静态类型更快的代码
基础教程
调用 C 函数
使用 C 库
扩展类型(又名.cdef 类)
pxd 文件
Caveats
Profiling
Unicode 和传递字符串
内存分配
纯 Python 模式
使用 NumPy
使用 Python 数组
进一步阅读
相关工作
附录:在 Windows 上安装 MinGW
语言基础
扩展类型
扩展类型的特殊方法
在 Cython 模块之间共享声明
与外部 C 代码连接
源文件和编译
早期绑定速度
在 Cython 中使用 C ++
融合类型(模板)
将 Cython 代码移植到 PyPy
Limitations
Cython 和 Pyrex 之间的区别
键入的内存视图
实现缓冲协议
使用并行性
调试你的 Cython 程序
用于 NumPy 用户的 Cython
Pythran 作为 Numpy 后端

Numba 0.44 中文文档【校对】

参与方式:https://github.com/apachecn/numba-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/numba-doc-zh/issues/1

项目仓库:https://github.com/apachecn/numba-doc-zh

认领:1/79,校对:1/79

章节贡献者进度
1. 用户手册--
1.1。 Numba 的约 5 分钟指南@saltball100%
1.2。概述
1.3。安装
1.4。使用@jit 编译 Python 代码
1.5。使用@generated_jit 进行灵活的专业化
1.6。创建 Numpy 通用函数
1.7。用@jitclass 编译 python 类
1.8。使用@cfunc 创建 C 回调
1.9。提前编译代码
1.10。使用@jit 自动并行化
1.11。使用@stencil装饰器
1.12。从 JIT 代码 中回调到 Python 解释器
1.13。性能提示
1.14。线程层
1.15。故障排除和提示
1.16。常见问题
1.17。示例
1.18。会谈和教程
2. 参考手册--
2.1。类型和签名
2.2。即时编译
2.3。提前编译
2.4。公用事业
2.5。环境变量
2.6。支持的 Python 功能
2.7。支持的 NumPy 功能
2.8。与 Python 语义的偏差
2.9。浮点陷阱
2.10。 Python 2.7 寿命终止计划
3. 用于 CUDA GPU 的 Numba--
3.1。概述
3.2。编写 CUDA 内核
3.3。内存管理
3.4。编写设备功能
3.5。 CUDA Python 中支持的 Python 功能
3.6。支持的原子操作
3.7。随机数生成
3.8。设备管理
3.10。示例
3.11。使用 CUDA 模拟器 调试 CUDA Python
3.12。 GPU 减少
3.13。 CUDA Ufuncs 和广义 Ufuncs
3.14。共享 CUDA 内存
3.15。 CUDA 阵列接口
3.16。 CUDA 常见问题
4. CUDA Python 参考--
4.1。 CUDA 主机 API
4.2。 CUDA 内核 API
4.3。内存管理
5. 用于 AMD ROC GPU 的 Numba--
5.1。概述
5.2。编写 HSA 内核
5.3。内存管理
5.4。编写设备功能
5.5。支持的原子操作
5.6。代理商
5.7。 ROC Ufuncs 和广义 Ufuncs
5.8。示例
6. 扩展 Numba
6.1。高级扩展 API
6.2。低级扩展 API
6.3。示例:间隔类型
7. 开发者手册--
7.1。贡献给 Numba
7.2。 Numba 建筑
7.3。多态调度
7.4。关于发电机的注意事项
7.5。关于 Numba Runtime 的注意事项
7.6。使用 Numba Rewrite Pass 获得乐趣和优化
7.7。实时变量分析
7.8。上市
7.9。模板注释
7.10。关于自定义管道的注意事项
7.11。环境对象
7.12。哈希 的注意事项
7.13。 Numba 项目路线图
8. Numba 增强建议
9. 术语表

Scrapy 1.6 中文文档【校对】

参与方式:https://github.com/apachecn/scrapy-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/scrapy-doc-zh/issues/1

项目仓库:https://github.com/apachecn/scrapy-doc-zh

认领:0/44,翻译:0/44

章节校对者进度
简介
Scrapy at a glance
安装指南
Scrapy 教程
实例
命令行工具
Spider
选择器
项目
项目加载器
Scrapy shell
项目管道
Feed 导出
请求和响应
链接提取器
设置
例外情况
Logging
统计数据集合
发送电子邮件
远程登录控制台
Web服务
常见问题
调试spiders
Spider 合约
常用做法
通用爬虫
使用浏览器的开发人员工具进行抓取
调试内存泄漏
下载和处理文件和图像
部署 Spider
AutoThrottle 扩展
Benchmarking
作业:暂停和恢复爬行
体系结构概述
下载器中间件
Spider 中间件
扩展
核心API
信号
条目导出器
发行说明
为 Scrapy 贡献
版本控制和API稳定性

百页机器学习小书【翻译】

参与方式:https://github.com/apachecn/ml-book-100-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/ml-book-100-zh/issues/1

项目仓库:https://github.com/apachecn/ml-book-100-zh

认领:10/12,翻译:1/12

章节贡献者进度
零、前言@PEGASUS1993100%
一、介绍@PEGASUS1993
二、符号和定义@PEGASUS1993
三、基本算法@Rachel-Hu
四、线性算法剖析@P3n9W31
五、基本实践@chengchengbai
六、神经网络和深度学习@Everfighting
七、问题和答案
八、高级实践
九、无监督学习@onlyonewater
十、其它学习形式@kjlintong
十一、总结@kjlintong

短篇集【校对】

参与方式:https://github.com/apachecn/misc-docs-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/misc-docs-zh/issues/1

项目仓库:https://github.com/apachecn/misc-docs-zh

关于卷积神经网络:认领:2/12,校对:2/12

章节贡献者进度
关于卷积神经网络--
1@daewis100%
2.1.1-2.1.3@daewis100%
2.1.4-2.1.6
2.2.1
2.2.2-2.2.3
2.3-2.4
3.1
3.2
3.3
3.4-3.5
4.1
4.2

写给不耐烦程序员的 JavaScript【校对】

参与方式:https://github.com/apachecn/impatient-js-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/impatient-js-zh/issues/1

项目仓库:https://github.com/apachecn/impatient-js-zh

认领:32/42,校对:31/42

章节贡献者进度
1.关于本书(ES2019 版)@YouWillBe100%
2.常见问题:本书@huangzijian888100%
3. JavaScript 的历史和演变
4.常见问题:JavaScript
5.概览@kj415j45100%
6.语法@lq920320100%
7.在控制台上打印信息(console.*@lq920320100%
8.断言 API@lq920320100%
9.测验和练习入门@so-hard100%
10.变量和赋值@so-hard100%
11.值@lq920320100%
12.运算符@wizardforcel100%
13.非值undefinednull@wizardforcel100%
14.布尔值@wizardforcel100%
15.数字@wizardforcel100%
16. Math@wizardforcel100%
17. Unicode - 简要介绍(高级)@wizardforcel100%
18.字符串@wizardforcel100%
19.使用模板字面值和标记模板@wizardforcel100%
20.符号@wizardforcel100%
21.控制流语句@wizardforcel100%
22.异常处理
23.可调用值
24.模块
25.单个对象
26.原型链和类@lq920320100%
27.同步迭代@lq920320100%
28.数组(Array@52admln100%
29.类型化数组:处理二进制数据(高级)
30.映射(Map@so-hard100%
31. WeakMaps(WeakMap
32.集(Set@liuyepiaoxiang100%
33. WeakSets(WeakSet
34.解构@Kavelaa100%
35.同步生成器(高级)
36. JavaScript 中的异步编程@Kavelaa100%
37.异步编程的 Promise@iChrisJ100%
38.异步函数@iChrisJ100%
39.正则表达式(RegExp@iChrisJ100%
40.日期(Date@facebesidewyj100%
41.创建和解析 JSON(JSON@xdyushenli
42.其余章节在哪里?@wizardforcel100%

seaborn 0.9 中文文档【翻译】

参与方式:https://github.com/apachecn/seaborn-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/seaborn-doc-zh/issues/1

项目仓库:https://github.com/apachecn/seaborn-doc-zh

认领:64/74,翻译:51/74

序号章节译者进度
1An introduction to seaborn@yiran7324100%
2Installing and getting started@neolei100%
3Visualizing statistical relationships@JNJYan100%
4Plotting with categorical data@hold2010100%
5Visualizing the distribution of a dataset@alohahahaha100%
6Visualizing linear relationships@friedhelm739
7Building structured multi-plot grids@keyianpai100%
8Controlling figure aesthetics@P3n9W31100%
9Choosing color palettes@Modrisco100%
10seaborn.relplot@Stuming
11seaborn.scatterplot@tututwo
12seaborn.lineplot@tututwo
13seaborn.catplot@LIJIANcoder97100%
14seaborn.stripplot@LIJIANcoder97100%
15seaborn.swarmplot@LIJIANcoder97100%
16seaborn.boxplot@FindNorthStar100%
17seaborn.violinplot@FindNorthStar100%
18seaborn.boxenplot@FindNorthStar100%
19seaborn.pointplot@FindNorthStar100%
20seaborn.barplot@melon-bun
21seaborn.countplot@Stuming100%
22seaborn.jointplot@Stuming
23seaborn.pairplot@Stuming
24seaborn.distplot@hyuuo100%
25seaborn.kdeplot@hyuuo100%
26seaborn.rugplot@P3n9W31100%
27seaborn.lmplot@P3n9W31100%
28seaborn.regplot@P3n9W31100%
29seaborn.residplot@P3n9W31100%
30seaborn.heatmap@hyuuo100%
31seaborn.clustermap
32seaborn.FacetGrid@hyuuo100%
33seaborn.FacetGrid.map@sfw134100%
34seaborn.FacetGrid.map_dataframe@sfw134100%
35seaborn.PairGrid@sfw134
36seaborn.PairGrid.map@sfw134
37seaborn.PairGrid.map_diag@sfw134
38seaborn.PairGrid.map_offdiag@sfw134
39seaborn.PairGrid.map_lower@sfw134
40seaborn.PairGrid.map_upper@sfw134
41seaborn.JointGrid
42seaborn.JointGrid.plot
43seaborn.JointGrid.plot_joint
44seaborn.JointGrid.plot_marginals
45seaborn.set@lbllol365100%
46seaborn.axes_style@lbllol365100%
47seaborn.set_style@lbllol365100%
48seaborn.plotting_context
49seaborn.set_context
50seaborn.set_color_codes
51seaborn.reset_defaults
52seaborn.reset_orig
53seaborn.set_palette@Modrisco100%
54seaborn.color_palette@Modrisco100%
55seaborn.husl_palette@Modrisco100%
56seaborn.hls_palette@Modrisco100%
57seaborn.cubehelix_palette@Modrisco100%
58seaborn.dark_palette@Modrisco100%
59seaborn.light_palette@Modrisco100%
60seaborn.diverging_palette@Modrisco100%
61seaborn.blend_palette@Modrisco100%
62seaborn.xkcd_palette@Modrisco100%
63seaborn.crayon_palette@Modrisco100%
64seaborn.mpl_palette@Modrisco100%
65seaborn.choose_colorbrewer_palette@Modrisco100%
66seaborn.choose_cubehelix_palette@Modrisco100%
67seaborn.choose_light_palette@Modrisco100%
68seaborn.choose_dark_palette@Modrisco100%
69seaborn.choose_diverging_palette@Modrisco100%
70seaborn.load_dataset@Modrisco100%
71seaborn.despine@Modrisco100%
72seaborn.desaturate@Modrisco100%
73seaborn.saturate@Modrisco100%
74seaborn.set_hls_values@Modrisco100%

Git 中文参考【校对】

参与方式:https://github.com/apachecn/git-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/git-doc-zh/issues/1

项目仓库:https://github.com/apachecn/git-doc-zh

认领:14/83,校对:12/83

序号章节贡献者进度
1git
2git-config@honglyua100%
3git-help@honglyua100%
4git-init@honglyua100%
5git-clone@honglyua100%
6git-add@yulezheng100%
7git-status@honglyua100%
8git-diff@honglyua100%
9git-commit@yulezheng
10git-reset@honglyua100%
11git-rm@honglyua100%
12git-mv@honglyua100%
13git-branch@honglyua100%
14git-checkout
15git-merge
16git-mergetool
17git-log
18git-stash
19git-tag
20git-worktree
21git-fetch
22git-pull@Mrhuangyi100%
23git-push@Mrhuangyi
24git-remote
25git-submodule
26git-show
27git-log
29git-shortlog
30git-describe
31git-apply
32git-cherry-pick
34git-rebase
35git-revert
36git-bisect
37git-blame
38git-grep
39gitattributes
40giteveryday
41gitglossary
42githooks
43gitignore
44gitmodules
45gitrevisions
46gittutorial
47gitworkflows
48git-am
50git-format-patch
51git-send-email
52git-request-pull
53git-svn
54git-fast-import
55git-clean
56git-gc
57git-fsck
58git-reflog
59git-filter-branch
60git-instaweb
61git-archive
62git-bundle
63git-daemon
64git-update-server-info
65git-cat-file
66git-check-ignore
67git-checkout-index
68git-commit-tree
69git-count-objects
70git-diff-index
71git-for-each-ref
72git-hash-object
73git-ls-files
74git-merge-base
75git-read-tree
76git-rev-list
77git-rev-parse
78git-show-ref
79git-symbolic-ref
80git-update-index
81git-update-ref
82git-verify-pack
83git-write-tree

HBase 3.0 中文参考指南【校对】

参与方式:https://github.com/apachecn/hbase-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/hbase-doc-zh/issues/1

项目仓库:https://github.com/apachecn/hbase-doc-zh

认领:14/31,校对:14/31

章节贡献者进度
Preface@xixici100%
Getting Started@xixici100%
Apache HBase Configuration@xixici100%
Upgrading@xixici100%
The Apache HBase Shell@xixici100%
Data Model
HBase and Schema Design@RaymondCode100%
RegionServer Sizing Rules of Thumb
HBase and MapReduce@BridgetLai100%
Securing Apache HBase
Architecture
In-memory Compaction@mychaow100%
Backup and Restore@mychaow100%
Synchronous Replication@mychaow100%
Apache HBase APIs@xixici100%
Apache HBase External APIs@xixici100%
Thrift API and Filter Language@xixici100%
HBase and Spark@TsingJyujing100%
Apache HBase Coprocessors
Apache HBase Performance Tuning
Troubleshooting and Debugging Apache HBase
Apache HBase Case Studies
Apache HBase Operational Management
Building and Developing Apache HBase
Unit Testing HBase Applications
Protobuf in HBase
Procedure Framework (Pv2): HBASE-12439
AMv2 Description for Devs
ZooKeeper
Community
Appendix

UCB Prob140:面向数据科学的概率论【翻译】

参与方式:https://github.com/apachecn/prob140-textbook-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/prob140-textbook-zh/issues/2

项目仓库:https://github.com/apachecn/prob140-textbook-zh

认领:22/25,翻译:19/25

标题译者翻译进度
一、基础飞龙100%
二、计算几率飞龙100%
三、随机变量飞龙100%
四、事件之间的关系@biubiubiuboomboomboom100%
五、事件集合>0%
六、随机计数@viviwong100%
七、泊松化@YAOYI626100%
八、期望50%
九、条件(续)@YAOYI626100%
十、马尔科夫链喵十八100%
十一、马尔科夫链(续)喵十八100%
十二、标准差缺只萨摩100%
十三、方差和协方差缺只萨摩100%
十四、中心极限定理喵十八100%
十五、连续分布@ThunderboltSmile
十六、变换@hellozhaihy
十七、联合密度@Winchester-Yi100%
十八、正态和 Gamma 族@Winchester-Yi100%
十九、和的分布平淡的天100%
二十、估计方法平淡的天100%
二十一、Beta 和二项@lvzhetx100%
二十二、预测50%
二十三、联合正态随机变量@JUNE951234
二十四、简单线性回归@ThomasCai100%
二十五、多元回归@lanhaixuan100%

Machine Learning Mastery【校对】

参与方式:https://github.com/apachecn/ml-mastery-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/ml-mastery-zh/issues/1

项目仓库:https://github.com/apachecn/ml-mastery-zh

Keras:认领:0/46,校对:0/46

XGBoost:认领:0/18,校对:0/18

章节贡献者进度
深度学习与 Keras--
Keras 中神经网络模型的 5 步生命周期
在 Python 迷你课程中应用深度学习
Keras 深度学习库的二元分类教程
如何用 Keras 构建多层感知器神经网络模型
如何在 Keras 中检查深度学习模型
10 个用于 Amazon Web Services 深度学习的命令行秘籍
机器学习卷积神经网络的速成课程
如何在 Python 中使用 Keras 进行深度学习的度量
深度学习书籍
深度学习课程
你所知道的深度学习是一种谎言
如何设置 Amazon AWS EC2 GPU 以训练 Keras 深度学习模型(分步)
神经网络中批量和迭代之间的区别是什么?
在 Keras 展示深度学习模型训练历史
基于 Keras 的深度学习模型中的dropout正则化
评估 Keras 中深度学习模型的表现
如何评价深度学习模型的技巧
小批量梯度下降的简要介绍以及如何配置批量大小
在 Keras 中获得深度学习帮助的 9 种方法
如何使用 Keras 在 Python 中网格搜索深度学习模型的超参数
用 Keras 在 Python 中使用卷积神经网络进行手写数字识别
如何用 Keras 进行预测
用 Keras 进行深度学习的图像增强
8 个深度学习的鼓舞人心的应用
Python 深度学习库 Keras 简介
Python 深度学习库 TensorFlow 简介
Python 深度学习库 Theano 简介
如何使用 Keras 函数式 API 进行深度学习
Keras 深度学习库的多类分类教程
多层感知器神经网络速成课程
基于卷积神经网络的 Keras 深度学习库中的目标识别
流行的深度学习库
用深度学习预测电影评论的情感
Python 中的 Keras 深度学习库的回归教程
如何使用 Keras 获得可重现的结果
如何在 Linux 服务器上运行深度学习实验
保存并加载您的 Keras 深度学习模型
用 Keras 逐步开发 Python 中的第一个神经网络
用 Keras 理解 Python 中的有状态 LSTM 循环神经网络
在 Python 中使用 Keras 深度学习模型和 Scikit-Learn
如何使用预训练的 VGG 模型对照片中的物体进行分类
在 Python 和 Keras 中对深度学习模型使用学习率调度
如何在 Keras 中可视化深度学习神经网络模型
什么是深度学习?
何时使用 MLP,CNN 和 RNN 神经网络
为什么用随机权重初始化神经网络?
XGBoost--
通过在 Python 中使用 XGBoost 提前停止来避免过度拟合
如何在 Python 中调优 XGBoost 的多线程支持
如何配置梯度提升算法
在 Python 中使用 XGBoost 进行梯度提升的数据准备
如何使用 scikit-learn 在 Python 中开发您的第一个 XGBoost 模型
如何在 Python 中使用 XGBoost 评估梯度提升模型
在 Python 中使用 XGBoost 的特征重要性和特征选择
浅谈机器学习的梯度提升算法
应用机器学习的 XGBoost 简介
如何在 macOS 上为 Python 安装 XGBoost
如何在 Python 中使用 XGBoost 保存梯度提升模型
从梯度提升开始,比较 165 个数据集上的 13 种算法
在 Python 中使用 XGBoost 和 scikit-learn 进行随机梯度提升
如何使用 Amazon Web Services 在云中训练 XGBoost 模型
在 Python 中使用 XGBoost 调整梯度提升的学习率
如何在 Python 中使用 XGBoost 调整决策树的数量和大小
如何在 Python 中使用 XGBoost 可视化梯度提升决策树
在 Python 中开始使用 XGBoost 的 7 步迷你课程

Pytorch 1.0 中文文档【校对】

参与方式:https://github.com/apachecn/pytorch-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/pytorch-doc-zh/issues/274

项目仓库:https://github.com/apachecn/pytorch-doc-zh

认领:22/76,校对:1/76

章节译者进度校验者进度
教程部分----
Deep Learning with PyTorch: A 60 Minute Blitz@bat67100%@AllenZYJ
What is PyTorch?@bat67100%@AllenZYJ
Autograd: Automatic Differentiation@bat67100%@AllenZYJ
Neural Networks@bat67100%@AllenZYJ
Training a Classifier@bat67100%@AllenZYJ
Optional: Data Parallelism@bat67100%
Data Loading and Processing Tutorial@yportne13100%
Learning PyTorch with Examples@bat67100%@Smilexuhc
Transfer Learning Tutorial@jiangzhonglian100%@infdahai
Deploying a Seq2Seq Model with the Hybrid Frontend@cangyunye100%
Saving and Loading Models@bruce1408100%@luxinfeng
What is torch.nn really?@lhc741100%@luxinfeng
Finetuning Torchvision Models@ZHHAYO100%@luxinfeng
Spatial Transformer Networks Tutorial@PEGASUS1993100%@Smilexuhc
Neural Transfer Using PyTorch@bdqfork100%
Adversarial Example Generation@cangyunye100%@infdahai
Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX@PEGASUS1993100%
Chatbot Tutorial@a625687551100%@enningxie
Generating Names with a Character-Level RNN@hhxx2015100%@hijkzzz100%
Classifying Names with a Character-Level RNN@hhxx2015100%@hijkzzz
Deep Learning for NLP with Pytorch@bruce1408100%
Introduction to PyTorch@guobaoyo100%
Deep Learning with PyTorch@bdqfork100%
Word Embeddings: Encoding Lexical Semantics@sight007100%@Smilexuhc
Sequence Models and Long-Short Term Memory Networks@ETCartman100%
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF@apachecn100%@enningxie
Translation with a Sequence to Sequence Network and Attention@mengfu188100%
DCGAN Tutorial@wangshuai9517100%@infdahai
Reinforcement Learning (DQN) Tutorial@friedhelm739100%@infdahai
Creating Extensions Using numpy and scipy@cangyunye100%
Custom C++ and CUDA Extensions@P3n9W31100%
Extending TorchScript with Custom C++ Operators@apachecn100%@sunxia233
Writing Distributed Applications with PyTorch@firdameng100%
PyTorch 1.0 Distributed Trainer with Amazon AWS@yportne13100%
ONNX Live Tutorial@PEGASUS1993100%
Loading a PyTorch Model in C++@talengu100%
Using the PyTorch C++ Frontend@solerji100%
文档部分----
Autograd mechanics@PEGASUS1993100%
Broadcasting semantics@PEGASUS1993100%
CUDA semantics@jiangzhonglian100%
Extending PyTorch@PEGASUS1993100%
Frequently Asked Questions@PEGASUS1993100%
Multiprocessing best practices@cvley100%
Reproducibility@apachecn100%@bruce1408
Serialization semantics@yuange250100%
Windows FAQ@PEGASUS1993100%
torch@infdahai100%
Tensors@infdahai
Random sampling@apachecn100%
Serialization, Parallelism, Utilities@apachecn100%
Pointwise Ops@apachecn100%
Reduction Ops@apachecn100%
Comparison Ops@apachecn100%
Spectral Ops@apachecn100%
Other Operations@apachecn100%
BLAS and LAPACK Operations@apachecn100%
torch.Tensor@hijkzzz100%
Tensor Attributes@yuange250100%
Type Info@PEGASUS1993100%
torch.sparse@hijkzzz100%
torch.cuda@bdqfork100%
torch.Storage@yuange250100%
torch.nn@gongel100%
torch.nn.functional@hijkzzz100%
torch.nn.init@GeneZC100%
torch.optim@apachecn100%@zonasw
Automatic differentiation package - torch.autograd@gfjiangly100%
Distributed communication package - torch.distributed@univeryinli100%
Probability distributions - torch.distributions@hijkzzz100%
Torch Script@keyianpai100%
Multiprocessing package - torch.multiprocessing@hijkzzz100%
torch.utils.bottleneck@belonHan100%
torch.utils.checkpoint@belonHan100%
torch.utils.cpp_extension@belonHan100%
torch.utils.data@BXuan694100%
torch.utils.dlpack@kunwuz100%
torch.hub@kunwuz100%
torch.utils.model_zoo@BXuan694100%
torch.onnx@guobaoyo100%
Distributed communication package (deprecated) - torch.distributed.deprecated@luxinfeng100%
torchvision Reference@BXuan694100%
torchvision.datasets@BXuan694100%
torchvision.models@BXuan694100%
torchvision.transforms@BXuan694100%
torchvision.utils@BXuan694100%

OpenCV 4.0 中文教程【校对】

参与方式:https://github.com/apachecn/opencv-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/opencv-doc-zh/issues/1

项目仓库:https://github.com/apachecn/opencv-doc-zh

认领:29/51,校对:29/51。

章节贡献者进度
1. 简介-
1.1 OpenCV-Python教程简介@wstone0011100%
1.2 安装OpenCV—Python@wstone0011100%
2. GUI功能-
2.1 图像入门@ranxx100%
2.2 视频入门@ranxx100%
2.3 绘图功能@ranxx100%
2.4 鼠标作为画笔@ranxx100%
2.5 作为调色板的跟踪栏@ranxx100%
3. 核心操作-
3.1 图像基本操作@luxinfeng100%
3.2 图像的算术运算@luxinfeng100%
3.3 性能测量和改进技术@luxinfeng100%
4. 图像处理-
4.1 更改颜色空间@friedhelm739100%
4.2 图像的几何变换@friedhelm739100%
4.3 图像阈值@friedhelm739100%
4.4 平滑图像@friedhelm739100%
4.5 形态转换@friedhelm739100%
4.6 图像梯度@friedhelm739100%
4.7 Canny边缘检测
4.8 影像金字塔
4.9 轮廓
4.10 直方图
4.11 图像转换
4.12 模板匹配
4.13 霍夫线变换
4.14 霍夫圆变换
4.15 基于分水岭算法的图像分割
基于GrabCut算法的交互式前景提取
5. 特征检测和描述-
5.1 了解功能@3lackrush100%
5.2 Harris角点检测
5.3 Shi-Tomasi角点检测和追踪的良好特征
5.4 SIFT简介(尺度不变特征变换)
5.5 SURF简介(加速鲁棒特性)
5.6 角点检测的FAST算法
5.7 简介(二进制鲁棒独立基本特征)
5.8 ORB(定向快速和快速旋转)
5.9 特征匹配
5.10 特征匹配+ Homography查找对象
6. 视频分析-
6.1 Meanshift和Camshift@xmmmmmovo100%
6.2 光流@xmmmmmovo100%
6.3 背景减法@xmmmmmovo100%
7. 相机校准和3D重建-
7.1 相机校准@xmmmmmovo100%
7.2 姿势估计@xmmmmmovo100%
7.3 极线几何@xmmmmmovo100%
7.4 立体图像的深度图@xmmmmmovo100%
8. 机器学习-
8.1 K-最近邻@wstone0011100%
8.2 支持向量机(SVM)@wstone0011100%
8.3 K-Means聚类@wstone0011100%
9. 计算摄影-
9.1 图像去噪
9.2 图像修复
9.3 高动态范围(HDR)
10. 目标检测-
10.1 使用Haar Cascades进行人脸检测@jiangzhonglian100%
11. OpenCV-Python绑定-
11.1 OpenCV-Python绑定如何工作?@daidai21100%

认领完毕

UCB CS61b:Java 中的数据结构【翻译】

参与方式:https://github.com/apachecn/cs61b-textbook-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/cs61b-textbook-zh/issues/1

项目仓库:https://github.com/apachecn/cs61b-textbook-zh

认领:12/12,翻译:10/12

笔记整理活动

CS224n 自然语言处理

参与方式:https://github.com/apachecn/stanford-cs224n-notes-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/stanford-cs224n-notes-zh/issues/1

项目仓库:https://github.com/apachecn/stanford-cs224n-notes-zh

认领:12/20,整理:1/20

章节贡献者进度
Lecture 1@cx123cx456
Lecture 2@AllenZYJ
Lecture 3@cx123cx456
Lecture 4@ZSIRS
Lecture 5@ZSIRS
Lecture 6@ZSIRS
Lecture 7@neolei
Lecture 8@Qichao-Ge
Lecture 9@NewDreamstyle192
Lecture 10@enningxie
Lecture 11
Lecture 12
Lecture 13
Lecture 14
Lecture 15
Lecture 16
Lecture 17@pingjing233
Lecture 18
Lecture 19
Lecture 20@Willianan100%

关于我们

我们是一个大型开源社区,旗下 QQ 群共一万余人,订阅用户至少一万人。Github Star 数量超过 40k 个,在所有 Github 组织中排名前 150。网站日 uip 超过 4k,Alexa 排名的峰值为 20k。我们的核心成员拥有 CSDN 博客专家简书程序员优秀作者认证。我们与 DatawhaleAI 有道黄海广博士等国内知名开源组织和大 V 合作,组织公益性的翻译活动、学习活动和比赛组队活动。

与商业组织不同,我们并不会追逐热点,或者唯利是图。作为公益组织,我们将完成项目放在首要位置,并有足够时间把项目打磨到极致。我们希望做出广大 AI 爱好者真正需要的东西,打造真正有价值的长尾作品。

赞助我们

相关推荐
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
<p> <strong><span style="background-color:#FFFFFF;color:#E53333;font-size:24px;">本页面购买不发书!!!仅为视频课购买!!!</span></strong> </p> <p> <strong><span style="color:#E53333;font-size:18px;">请务必到</span></strong><a href="https://edu.csdn.net/bundled/detail/49?utm_source=banner"><strong><span style="color:#E53333;font-size:18px;">https://edu.csdn.net/bundled/detail/49</span></strong></a><strong><span style="color:#E53333;font-size:18px;">下单购买课+书。</span></strong> </p> <p> <span style="font-size:14px;">本页面,仅为观看视频页面,如需一并购买图书,请</span><span style="font-size:14px;">务必到</span><a href="https://edu.csdn.net/bundled/detail/49?utm_source=banner"><span style="font-size:14px;">https://edu.csdn.net/bundled/detail/49</span></a><span style="font-size:14px;">下单购买课程+图书!!!</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;">疯狂Python精讲课程覆盖《疯狂Python讲义》全书的主体内容。</span> </p> <span style="font-size:14px;">内容包括Python基本数据类型、Python列表、元组和字典、流程控制、函数式编程、面向对象编程、文件读写、异常控制、数据库编程、并发编程与网络编程、数据可视化分析、Python爬虫等。</span><br /> <span style="font-size:14px;"> 全套课程从Python基础开始介绍,逐步步入当前就业热点。将会带着大家从Python基础语法开始学习,为每个知识点都提供对应的代码实操、代码练习,逐步过渡到文件IO、数据库编程、并发编程、网络编程、数据分 析和网络爬虫等内容,本课程会从小案例起,至爬虫、数据分析案例终、以Python知识体系作为内在逻辑,以Python案例作为学习方式,最终达到“知行合一”。</span><br />
©️2020 CSDN 皮肤主题: 鲸 设计师:meimeiellie 返回首页