求职攻略 | Datawhale助力秋招最强战甲

秋招变夏招,还没准备好?Datawhale团队成员offer收割机牵头,带领14名成员历时2个月,整理了一份机器学习算法工程师求职面经:Daily-interview。一份小而美的面经助您备战秋招,夏天来了,offer还会远吗?

金三银四的实习求职季已过,不知道屏幕对面的你有没有收到心仪的offer呢?如果你是offer拿到手软的大佬,不要懈怠,让优秀在人生长跑中成为一种习惯。但如果在求职中四处碰壁,与心仪的企业失之交臂,也不要整日眉头紧锁,你需要分析失败原因,修整心情,重新出发。

秋招马上要来啦!你的战甲准备好了吗?

何为战甲

一定有人会问,面试求职的战甲是什么呢?小编认为应该是一份属于自己的面经。

牛客网,知乎等众多网站上包含了数以百万计的面经,但往往大而散,面试者在准备面试时候去翻阅不但浪费时间,翻阅材料越多,越觉得自己很多知识点都没有掌握,造成心理上极大的压力,导致面试中不能发挥正常水平甚至面试失败。这就和高考前夕是一个道理,老师会告诫你:回归基础,不要再去做难题。回归基础为了以不变应万变,不做难题则是心理上的博弈。

那说到回归基础,每个人的做法又不同。有的人会拿起课本,将书中基础概念理论全部过一遍,没有针对性,没有侧重点。这时候就需要看看学霸们是怎么做的了,学霸会拿起自己的笔记本,上边全是重点难点易错点,是针对自己的学习情况总结出来的,这也是为什么每年状元的笔记本能卖出天价的原因之一吧。

其实,如果你是位有心人,那应该有自己的一份面试笔记,记录求职中常涉及到的知识点和自己做的项目中常被问到的问题。每次面试之前看一遍,做到举一反三,融会贯通,熟捻于心,方能在每次面试中汲取经验,最后从容应对。我个人就有自己的面试笔记,每次面试之前都会翻一遍,边看边想,但求好运。

但如果之前并没有意识到这一问题也没关系,Datawhale为你呈现一份小而美的面经。首先需要明白的是:这不是一份大而全,涵盖所有内容的面经,因为知识在不断更新迭代,做不到涵盖所有。同时不提供查漏补缺,因为每个人的短板不尽相同,需要面试者根据自己知识体系,多加思考,自己完善。 这是一份每一个面试者面试之前必看一遍的小面经,面试之前花半天时间,温故而知新。 如果你能根据自己的实际情况进行补充与修正,那可谓是如虎添翼,战甲升级了。

战甲现身

接下来看看这件战甲都由什么组成呢?也就是说这份面经应该怎么使用呢?

面经内容以岗位为划分,包含机器学习算法工程师,图像处理算法工程师,自然语言处理算法工程师三个岗位,目前只更新了机器学习算法工程师的面试指南,不过求职图像处理和自然语言处理的小伙伴也可以作为参考。

机器学习算法工程师面经共包含:ML、coding、Big Data、Logic & probability、cs subjects和DL六部分内容,涵盖计算机学科基础、逻辑思维、概率论基础、大数据、数据结构、机器学习及深度学习等知识,绝对是一份值得借鉴的面经啦。

image

01 Machine Learning

这部分介绍了机器学习常问算法的内容,包含了以下众多常用算法。每个子模块里介绍了基本思想后加入了算法十问和面试真题环节。

image

以Adaboost为例,首先介绍集成学习的基本知识

image

然后针对Adaboost经常出现的问题总结了:算法十问

image

最后给出了面试真题,关于面试真题,我建议大家将自己面试中遇到的问题加入进来,形成自己的面经小册子

image

02 Coding

这部分对常考数据结构与算法进行了介绍。

image

针对每一个细分环节,给出了十个经典题目参考学习,帮助学习理解。以sort为例,总结了快排、堆排、归并排序、多路归并排序、单链表插入排序与单链表归并排序的经典题目供大家学习,都是面试中常出现的点了,话不多说,你懂我意思吧。

03 Big Data

这部分包含了mapreduce、Technology与questions三部分内容,介绍了处理海量数据的相关技术和方法,最后同样给出了面试中经常出现的经典题目供大家参考。

image

04 Logic & probability

这部分内容包含了逻辑题目及概率题目两方面的内容。这部分也是面试中经常涉及到的题目了,这种题目没有什么技巧,只能够按照逻辑一点点分析,考察的是最基本的思维逻辑,做这类题目时只能沉心静气,慢慢分析但也要注意时间的把控。

image

05 CS Subject

这部分包含了计算机的一些基础知识,涉及操作系统、计算机网络和数据库等方面的知识,进程和线程具体是什么,Http和Https的区别等等内容,用心看上3遍,帮助你从容应对面试官提出的不经意的小问题啦!

[图片上传失败…(image-7f86bd-1558942151411)]

06 Deep Learning

这部分是关于深度学习的内容,该部分的内容还在更新完善中,大家可以先学习前边的内容,然后和小编一起期待后续内容的完善吧。

获取战甲

GitHub 地址:

https://github.com/datawhalechina/Daily-interview

点击阅读原文也可以直接浏览面经内容,别忘记star,关注后续更新内容啊。 除了收下这份面经使用指南外,还给大家带来了一个激动人心的好消息,针对这次总结的面经内容,我们正在筹备组队学习啦,带领大家一起备战秋招!

最后,希望每一份努力都有所收获。即将到来的秋招,你,准备好了吗?

贡献人员名单:

总负责人:xiaoran

监督&审核人:吕雪杰、康兵兵、程智超、xiaoran、咖喱

参与人员:李奇锋、程钰俊、Summer、莎莎、追风者、ZDou、地山谦、李文乐、Yvette明明就

感谢以上小伙伴为这次面经作出的努力~同时也欢迎优秀的你,为开源内容做一份贡献。

image

展开阅读全文

150讲轻松搞定Python网络爬虫

05-16
【为什么学爬虫?】        1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!        2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。   从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑

实用主义学Python(小白也容易上手的Python实用案例)

12-24
原价169,限时立减100元! 系统掌握Python核心语法16点,轻松应对工作中80%以上的Python使用场景! 69元=72讲+源码+社群答疑+讲师社群分享会  【哪些人适合学习这门课程?】 1)大学生,平时只学习了Python理论,并未接触Python实战问题; 2)对Python实用技能掌握薄弱的人,自动化、爬虫、数据分析能让你快速提高工作效率; 3)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; 4)想修炼更好的编程内功,优秀的工程师肯定不能只会一门语言,Python语言功能强大、使用高效、简单易学。 【超实用技能】 从零开始 自动生成工作周报 职场升级 豆瓣电影数据爬取 实用案例 奥运冠军数据分析 自动化办公:通过Python自动化分析Excel数据并自动操作Word文档,最终获得一份基于Excel表格的数据分析报告。 豆瓣电影爬虫:通过Python自动爬取豆瓣电影信息并将电影图片保存到本地。 奥运会数据分析实战 简介:通过Python分析120年间奥运会的数据,从不同角度入手分析,从而得出一些有趣的结论。 【超人气老师】 二两 中国人工智能协会高级会员 生成对抗神经网络研究者 《深入浅出生成对抗网络:原理剖析与TensorFlow实现》一书作者 阿里云大学云学院导师 前大型游戏公司后端工程师 【超丰富实用案例】 0)图片背景去除案例 1)自动生成工作周报案例 2)豆瓣电影数据爬取案例 3)奥运会数据分析案例 4)自动处理邮件案例 5)github信息爬取/更新提醒案例 6)B站百大UP信息爬取与分析案例 7)构建自己的论文网站案例
©️2020 CSDN 皮肤主题: 黑客帝国 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值