ApacheCN 翻译活动进度公告 2019.2.18

PyTorch 1.0 中文文档和教程

教程部分:认领:36/37,翻译:28/37;文档部分:认领:29/39,翻译:15/39

参与方式:https://github.com/apachecn/pytorch-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/pytorch-doc-zh/issues/274

项目仓库:https://github.com/apachecn/pytorch-doc-zh

章节 贡献者 进度
教程部分 - -
Deep Learning with PyTorch: A 60 Minute Blitz @bat67 100%
What is PyTorch? @bat67 100%
Autograd: Automatic Differentiation @bat67 100%
Neural Networks @bat67 100%
Training a Classifier @bat67 100%
Optional: Data Parallelism @bat67 100%
Data Loading and Processing Tutorial @yportne13 100%
Learning PyTorch with Examples @bat67 100%
Transfer Learning Tutorial @jiangzhonglian 100%
Deploying a Seq2Seq Model with the Hybrid Frontend @cangyunye 100%
Saving and Loading Models @sfyumi
What is <cite>torch.nn</cite> really? @lhc741
Finetuning Torchvision Models @ZHHAYO 100%
Spatial Transformer Networks Tutorial @PEGASUS1993 100%
Neural Transfer Using PyTorch @bdqfork 100%
Adversarial Example Generation @cangyunye 100%
Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX @PEGASUS1993 100%
Chatbot Tutorial @a625687551 100%
Generating Names with a Character-Level RNN @hhxx2015 100%
Classifying Names with a Character-Level RNN @hhxx2015 100%
Deep Learning for NLP with Pytorch @BreezeHavana
Introduction to PyTorch @guobaoyo 100%
Deep Learning with PyTorch @bdqfork 100%
Word Embeddings: Encoding Lexical Semantics @sight007 100%
Sequence Models and Long-Short Term Memory Networks @ETCartman 100%
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF @JohnJiangLA
Translation with a Sequence to Sequence Network and Attention @mengfu188 100%
DCGAN Tutorial @wangshuai9517
Reinforcement Learning (DQN) Tutorial @BreezeHavana
Creating Extensions Using numpy and scipy @cangyunye 100%
Custom C++ and CUDA Extensions @Lotayou
Extending TorchScript with Custom C++ Operators
Writing Distributed Applications with PyTorch @firdameng
PyTorch 1.0 Distributed Trainer with Amazon AWS @yportne13 100%
ONNX Live Tutorial @PEGASUS1993 100%
Loading a PyTorch Model in C++ @talengu 100%
Using the PyTorch C++ Frontend @solerji 100%
文档部分 - -
Autograd mechanics @PEGASUS1993 100%
Broadcasting semantics @PEGASUS1993 100%
CUDA semantics @jiangzhonglian 100%
Extending PyTorch @PEGASUS1993
Frequently Asked Questions @PEGASUS1993
Multiprocessing best practices @cvley 100%
Reproducibility @WyattHuang1
Serialization semantics @yuange250 100%
Windows FAQ @PEGASUS1993
torch @ZHHAYO
torch.Tensor @hijkzzz 100%
Tensor Attributes @yuange250 100%
Type Info @PEGASUS1993 100%
torch.sparse @hijkzzz 100%
torch.cuda @bdqfork 100%
torch.Storage @yuange250 100%
torch.nn @yuange250
torch.nn.functional @hijkzzz 100%
torch.nn.init @GeneZC 100%
torch.optim @qiaokuoyuan
Automatic differentiation package - torch.autograd @gfjiangly
Distributed communication package - torch.distributed
Probability distributions - torch.distributions @hijkzzz
Torch Script
Multiprocessing package - torch.multiprocessing @hijkzzz 100%
torch.utils.bottleneck
torch.utils.checkpoint
torch.utils.cpp_extension
torch.utils.data
torch.utils.dlpack
torch.hub
torch.utils.model_zoo
torch.onnx @guobaoyo 100%
Distributed communication package (deprecated) - torch.distributed.deprecated
torchvision Reference @BXuan694
torchvision.datasets @BXuan694
torchvision.models @BXuan694
torchvision.transforms @BXuan694
torchvision.utils @BXuan694

HBase 3.0 中文参考指南

认领:2/31,翻译:0/31

参与方式:https://github.com/apachecn/hbase-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/hbase-doc-zh/issues/1

项目仓库:https://github.com/apachecn/hbase-doc-zh

章节 译者 进度
Preface
Getting Started
Apache HBase Configuration
Upgrading
The Apache HBase Shell
Data Model
HBase and Schema Design @RaymondCode
RegionServer Sizing Rules of Thumb
HBase and MapReduce
Securing Apache HBase
Architecture
In-memory Compaction
Backup and Restore
Synchronous Replication
Apache HBase APIs
Apache HBase External APIs
Thrift API and Filter Language
HBase and Spark @TsingJyujing
Apache HBase Coprocessors
Apache HBase Performance Tuning
Troubleshooting and Debugging Apache HBase
Apache HBase Case Studies
Apache HBase Operational Management
Building and Developing Apache HBase
Unit Testing HBase Applications
Protobuf in HBase
Procedure Framework (Pv2): HBASE-12439
AMv2 Description for Devs
ZooKeeper
Community
Appendix

Airflow 中文文档

认领:23/30,翻译:23/30。

参与方式:https://github.com/apachecn/airflow-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/airflow-doc-zh/issues/1

项目仓库:https://github.com/apachecn/airflow-doc-zh

章节 贡献者 进度
1 项目
2 协议 - 100%
3 快速开始 @ImPerat0R_ 100%
4 安装 @Thinking Chen 100%
5 教程 @ImPerat0R_ 100%
6 操作指南 @ImPerat0R_ 100%
7 设置配置选项 @ImPerat0R_ 100%
8 初始化数据库后端 @ImPerat0R_ 100%
9 使用操作器 @ImPerat0R_ 100%
10 管理连接 @ImPerat0R_ 100%
11 保护连接 @ImPerat0R_ 100%
12 写日志 @ImPerat0R_ 100%
13 使用Celery扩大规模 @ImPerat0R_ 100%
14 使用Dask扩展 @ImPerat0R_ 100%
15 使用Mesos扩展(社区贡献) @ImPerat0R_ 100%
16 使用systemd运行Airflow @ImPerat0R_ 100%
17 使用upstart运行Airflow @ImPerat0R_ 100%
18 使用测试模式配置 @ImPerat0R_ 100%
19 UI /截图 @ImPerat0R_ 100%
20 概念 @ImPerat0R_ 100%
21 数据分析 @ImPerat0R_ 100%
22 命令行接口 @ImPerat0R_ 100%
23 调度和触发器 @Ray 100%
24 插件 @ImPerat0R_ 100%
25 安全
26 时区
27 实验性 Rest API @ImPerat0R_ 100%
28 集成
29 Lineage
30 常见问题
31 API 参考

UCB CS61b Java 中的数据结构

认领:0/12,翻译:0/12

参与方式:https://github.com/apachecn/cs61b-textbook-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/cs61b-textbook-zh/issues/1

项目仓库:https://github.com/apachecn/cs61b-textbook-zh

标题 译者 进度
一、算法复杂度
二、抽象数据类型
三、满足规范
四、序列和它们的实现
五、树
六、搜索树
七、哈希
八、排序和选择
九、平衡搜索
十、并发和同步
十一、伪随机序列
十二、图

UCB Prob140 面向数据科学的概率论

认领:23/25,翻译:17/25

参与方式:https://github.com/apachecn/prob140-textbook-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/prob140-textbook-zh/issues/2

项目仓库:https://github.com/apachecn/prob140-textbook-zh

标题 译者 翻译进度
一、基础 飞龙 100%
二、计算几率 飞龙 100%
三、随机变量 飞龙 100%
四、事件之间的关系 @biubiubiuboomboomboom 100%
五、事件集合 @PEGASUS1993 >0%
六、随机计数 @viviwong 100%
七、泊松化 @YAOYI626 100%
八、期望 @PEGASUS1993 50%
九、条件(续) @YAOYI626 100%
十、马尔科夫链 喵十八 100%
十一、马尔科夫链(续) 喵十八 100%
十二、标准差 缺只萨摩 100%
十三、方差和协方差 缺只萨摩 100%
十四、中心极限定理 喵十八 100%
十五、连续分布 @ThunderboltSmile
十六、变换
十七、联合密度 @Winchester-Yi 100%
十八、正态和 Gamma 族 @Winchester-Yi 100%
十九、和的分布 平淡的天 100%
二十、估计方法 平淡的天 100%
二十一、Beta 和二项 @lvzhetx 100%
二十二、预测 @lvzhetx 50%
二十三、联合正态随机变量
二十四、简单线性回归 @ThomasCai 100%
二十五、多元回归 @lanhaixuan 100%

翻译征集

要求:

  • 机器学习/数据科学相关
  • 或者编程相关
  • 原文必须在互联网上开放
  • 不能只提供 PDF 格式(我们实在不想把精力都花在排版上)
  • 请先搜索有没有人翻译过

请回复本文

赞助我们

展开阅读全文

150讲轻松搞定Python网络爬虫

05-16
【为什么学爬虫?】        1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!        2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。   从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑
©️2020 CSDN 皮肤主题: 黑客帝国 设计师: 上身试试 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值